Spectral theory of C-symmetric non-selfadjoint differential operators of order 2n

نویسندگان

چکیده

We continue the spectral analysis of differential operators with complex coefficients, extending some results for Sturm-Liouville to higher order operators. give conditions essential spectrum be empty, and operator have compact resolvent. Conditions are given on coefficients resolvent Hilbert-Schmidt. These new even real i.e., selfadjoint case. Asymptotic is a central tool. See also https://ejde.math.txstate.edu/special/02/b2/abstr.html

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spectral monodromy of non selfadjoint operators

We propose to build in this paper a combinatorial invariant, called the ”spectral monodromy” from the spectrum of a single (non-selfadjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting selfadjoint h-pseudodifferential operators, given ...

متن کامل

Spectral instability for non-selfadjoint operators∗

We describe a recent result of M. Hager, stating roughly that for nonselfadjoint ordinary differential operators with a small random perturbation we have a Weyl law for the distribution of eigenvalues with a probability very close to 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Differential Equations

سال: 2023

ISSN: ['1072-6691']

DOI: https://doi.org/10.58997/ejde.sp.02.b2