Spectral theory of C-symmetric non-selfadjoint differential operators of order 2n
نویسندگان
چکیده
We continue the spectral analysis of differential operators with complex coefficients, extending some results for Sturm-Liouville to higher order operators. give conditions essential spectrum be empty, and operator have compact resolvent. Conditions are given on coefficients resolvent Hilbert-Schmidt. These new even real i.e., selfadjoint case. Asymptotic is a central tool. See also https://ejde.math.txstate.edu/special/02/b2/abstr.html
منابع مشابه
On the Spectral Properties of Degenerate Non-selfadjoint Elliptic systems of Differential Operators
متن کامل
Spectral monodromy of non selfadjoint operators
We propose to build in this paper a combinatorial invariant, called the ”spectral monodromy” from the spectrum of a single (non-selfadjoint) h-pseudodifferential operator with two degrees of freedom in the semi-classical limit. Our inspiration comes from the quantum monodromy defined for the joint spectrum of an integrable system of n commuting selfadjoint h-pseudodifferential operators, given ...
متن کاملon the spectral properties of degenerate non-selfadjoint elliptic systems of differential operators
متن کامل
Spectral instability for non-selfadjoint operators∗
We describe a recent result of M. Hager, stating roughly that for nonselfadjoint ordinary differential operators with a small random perturbation we have a Weyl law for the distribution of eigenvalues with a probability very close to 1.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Differential Equations
سال: 2023
ISSN: ['1072-6691']
DOI: https://doi.org/10.58997/ejde.sp.02.b2